Analysis of Student Facial Reactions during Classroom Instruction

Andi Hutami Endang, Amil Ahmad Ilham, Andani Achmad, Amiqatun Nasyati Yusri

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

Abstract

This study seeks to construct a model that is capable of categorizing students' facial expressions during classroom instructional sessions. Facial expressions serve as pivotal non-verbal indicators, offering valuable insights into students' emotional and cognitive conditions. Leveraging Convolutional Neural Network (CNN) technology, this research integrates image models with facial geometry feature models to identify a range of facial expressions including happiness, sadness, neutrality, surprise, anger, and fatigue. The dataset utilized in this investigation comprises 2,069 facial images sorted into six distinct categories of facial expressions. Data collection was carried out through the recording of primary school educational sessions and monitoring of classroom footage sourced from YouTube. Subsequent to preliminary processing steps, encompassing facial landmark recognition, geometry feature extraction, normalization, and data enhancement, the dataset was partitioned into training, validation, and testing sets utilizing an 80:10:10 ratio. The constructed CNN model incorporates six convolutional layers for facial images and four fully connected layers for facial geometry features. Model assessment was conducted utilizing metrics including accuracy, precision, recall, and F1-score. Results from testing reveal that the proposed model exhibits considerable accuracy in recognizing students' facial expressions, with a validation accuracy rate of 92% and a testing accuracy rate of 95%. This research makes a notable contribution to the fields of education and psychology by furnishing valuable feedback on students' emotional and cognitive involvement, thereby supporting educators in pinpointing learning impediments and enhancing instructional methods.

Original languageEnglish
Title of host publicationProceedings - 10th International Symposium on Accreditation of Engineering and Computing Education, ICACIT 2024
PublisherInstitute of Electrical and Electronics Engineers Inc.
ISBN (Electronic)9798350366709
DOIs
Publication statusPublished - 2024
Event10th International Symposium on Accreditation of Engineering and Computing Education, ICACIT 2024 - Bogota, Colombia
Duration: 3 Oct 20244 Oct 2024

Publication series

NameProceedings - 10th International Symposium on Accreditation of Engineering and Computing Education, ICACIT 2024

Conference

Conference10th International Symposium on Accreditation of Engineering and Computing Education, ICACIT 2024
Country/TerritoryColombia
CityBogota
Period3/10/244/10/24

Keywords

  • Classification
  • CNN
  • Facial Expression
  • Geometric Features
  • Learning

Fingerprint

Dive into the research topics of 'Analysis of Student Facial Reactions during Classroom Instruction'. Together they form a unique fingerprint.

Cite this